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Distances and classification of amino acids for different protein secondary structures
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Window profiles of amino acids in protein sequences are used to describe the amino acid environment. The
relative entropy or Kullback-Leibler distance derived from these profiles is used as a measure of dissimilarity
for comparison of amino acids and secondary structure conformations. Distance matrices of amino acid pairs
at different conformations are obtained, which display a non-negligible dependence of amino acid similarity on
conformations. Based on the conformation specific distances, a clustering analysis for amino acids is con-
ducted.
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I. INTRODUCTION tive entropy[4—6], which, for two distributions{p;} and
{q;}, is given by

The similarity of amino acids is the basis of protein se-
guence alignment, protein design, and protein structure pre- _ 1y _ .
diction. Several scoring schemes have been proposed based ddpi{aib) EI piln(p:/y). @
on amino acid similarity. The mutation data matrices of Day-
hoff [1] and the substitution matrices of Henikd®] are It corresponds to a likelihood ratio, and, f is expanded
standard choices of scores for sequence alignment and amigéounda; , its leading term is thg* distance:
acid similarity evaluation. However, these matrices, focusing
on the whole protein database, pay little attention to protein ) )= —a)?/p. .
secondary structures. How the amino acid similarity is influ- APk EI (pi=a)/p @

enced by different secondary structures is an interesting . ) . )
question. Furthermore, understanding the differences ca&'S often used in the following symmetrized form for the KL

help us in the protein sequence analysis. distance:
Despite the efforts in uncovering the information encoded _ _ _ ) .
in the primary structure, we still cannot read the language TABLE I. Sample sizes of each amino acid residue in different
describing the final three-dimensional fold of an active bio-Potein secondary structures.
logical macromolecule. Compared with the DNA sequence, a

protein sequence is generally much shorter, but the size of h N ¢ ‘
the alphabet is five times larger. A proper coarse graining of ¢ 690 732 822 224
the 20 amino acids into fewer clusters for different confor- g 2841 1764 3538 1179
mations is important for improving the signal-to-noise ratio T 2350 2288 3112 762
when extracting information by statistical means. = 1173 624 3648 1302
It is our purpose to propose a simple scheme to study A 5950 2019 2651 1122
amino acid similarity from amino acid string statistics. Infor- 5 1795 1633 4328 3090
mation about the environment for an amino acid at a certain 1904 922 2692 1388
conformation state may be provided by the statistics of resi- D 2841 1029 3621 1424
due strings or windows centered at the amino acid. The suc- E 4773 1514 2325 1172
cess of window-based approaches such as GE)Ror sec-
L . Q 2757 1008 1532 653
ondary structure prediction validates the use of such H 1132 294 1148 426
statistics. We shall derive a measure for the difference of
amino acid pairs based on the distance of probability distri- R 3108 1469 1948 7t
butions, and investigate how the difference is dependent on K 3861 1579 2645 1187
conformations. M 1390 693 679 223
I 3169 3333 1719 368
L 6262 3307 2952 850
Il. AMINO ACID DISTANCES v 3233 4461 2330 487
F 2225 1948 1545 444
Our discussion will be strongly based on the distance be- vy 1806 1773 1303 459
tween two probability distributions. A well-defined measure  w 827 632 536 173

of the distance is the Kullback-Leibl¢KL) distance or rela-
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FIG. 1. (Color online KL distancesdoubled

—+—D of outer sites from their corresponding noise
1 --o--cE; background. Each curve is for an amino acid at
.

the center labeled as 0, whose conformation is
turn. For clarity, the curves foM, I, L, V, F, Y,
and W have been shifted up by multiplying an
extra factor 100.

position

D({pi}.{ap)=3ld({p}.{a) +d({a}.{pD]. () Ni(y[x, @)
Pk(y|X,a)=W- ®)
The distributions to be considered here come from win- ’

dow statistics. For a given amino acid residye=x at the

conformation stater in a sequence,a,- - -a;- - -, we take  The weight matrixV 5o, ,, With its entries beind?,(y|x, a)

the stringa_,,j@_p4i+1---@i---a;+, Of width (2n+1) as is the so-called residue profile afat «. Such profiles are

a window. Denote b, (y|x,a) the count of residug at the  used in window-based approaches, e.g., GOR and artificial

k th site from the center of such windows. As in GOR, only neural network algorithnfi7].

the conformation of the central residue is concerned. A quan- We expect that, on an average, the correlation between the

tity derived fromN,(y|x,a) is central residue and an outer site decays when these become
far apart in the sequence. To examine the correlation, we
consider a large window width of 21, i.en=10, and take

N(X, @)= ; Ni(ylx, @), (4 the “noise” background to be the following average:

which, as the total count of residueat the conformatiorr, -8 10
is independent ok. The conditional probability distribution Qlylx,a)=2%| 2 Puylx,@)+ >, Puylx.a)|. (6
Pi(y|x,a) is estimated as k=-10 k=8

position position

FIG. 2. (Color online KL distances(doubled of outer sites FIG. 3. (Color online KL distances(doubled of outer sites
from their corresponding noise background. Each curve is for arirom their corresponding noise background. Each curve is for an
amino acid at the center labeled as 0, whose conformation is coiemino acid at the center labeled as 0, whose conformation is sheet.
For clarity, the curves foM, I, L, V, F, Y, andW have been shifted For clarity, the curves foM, I, L, V, F, Y, andW have been shifted
up by multiplying an extra factor 100. up by multiplying an extra factor 100.
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The KL distanceDy. o({Pi(Y|X, @)} ,{Q(y|X,«)}) provides
a measure of the correlation between the central site and sit 4o g
k. As we shall see, for our purpose of amino acid compari-
son, a narrow window of a strong correlation with width of 7

is used to describe amino acid enviroment.

Using distributionP,(y|x,a) from window statistics to
characterize amino acid residues, we define the distance ¢
residue paix andy at the same conformatiom as the fol-
lowing sum of KL distances:

g i

Duya= > , DUPEx. @)L {P2y.a)h. ()

k==+1,+2+

Similarly, to explore the difference of the same resicuat
different conformationgr and 8, we may define the distance positin

——W

FIG. 4. (Color online KL distances(doubled of outer sites
D opix= 2 D({Pu(z]x,a)} {Px(z|X,B)}). (8) from their corresponding noise background. Each curve is for an
T k=x1x2+3 amino acid at the center labeled as 0, whose conformation is helix.
For clarity, the curves foM, I, L, V, F, Y, andW have been shifted
By means of the residue pair distances, we can furtheap by multiplying an extra factor 100.
study the classification of amino acids. With the KL distance,
we may define the cluster distance in a way consistent with

that for residue pairs. For example, we characterize the clus- I RESULTS
ter consisting of residues andy by the “coarse-grained” Our analysis is performed on a dataset taken from the
probability database PDB_SELEC[B,9] of nonredundant protein se-
guences with known structures. The sequences share amino
P (7Ix& _ Ni(z|x, @) +Ni(z]y, @) g  acid identity less than 25%. We keep only the nonmembrane
Zlx&y,a) N(X,a)+N(y,a) ©) sequences with their lengths between 80 and 420. The sec-

ondary structure assignment is taken from the Database of
Then we may define the distance between this cluster anBecondary Structure in Proteif@BSSP [10]. As in GOR, we
some other residues or clusters. With cluster distance desse the following reduction of the eight DSSP states to four
fined, the cluster analysis can be used to reduce amino acglates of helix ), sheet &), coil (c), and turn ¢):
alphabets. H,G,I—h, E—e, X,S,B—c, andT—t. The counts of each

TABLE Il. Amino acid distance matrices for helicélsottom lef) and turns(top righd. Entries have been multiplied by a factor 200.

C 106 116 135 118 145 134 132 121 129 111 118 124 154 134 121 119 104 123 215
S 64 23 52 29 59 3 33 36 37 54 26 36 78 61 38 49 45 40 100
T 63 13 61 33 74 40 35 39 46 62 33 37 92 63 40 46 45 38 93
P 81 48 49 4 99 71 69 54 62 82 47 55 106 8 71 71 62 66 132
A 45 21 17 63 64 38 39 32 36 58 29 33 63 64 34 46 48 43 98
G 57 15 20 52 25 32 39 54 55 57 47 52 81 79 61 88 75 70 115
N 82 14 22 67 33 26 18 30 31 44 29 31 72 68 38 63 53 36 96
D 101 17 26 56 39 32 16 25 34 44 30 29 77 58 36 54 49 37 091
E 82 20 25 56 27 36 22 14 33 53 37 283 73 65 46 51 59 43 106
Q 70 16 21 60 19 28 17 21 14 51 32 38 79 66 51 62 62 49 100
H 55 23 24 55 26 26 33 35 34 28 51 58 90 79 54 81 70 55 113
R 69 21 22 59 21 30 22 28 24 13 28 30 71 69 38 54 49 48 101
K 80 21 25 67 28 38 22 27 23 19 38 13 81 63 38 49 51 47 102
M 48 57 45 8 23 5 75 82 64 51 50 50 60 93 62 85 93 78 141
| 43 81 65 104 35 78 104 116 88 76 66 73 79 22 47 55 55 54 104
L 35 65 52 90 26 62 83 99 73 59 53 56 67 15 10 49 36 31 85
V 37 59 44 8 22 55 77 90 67 53 52 51 60 16 12 09 46 58 99
F 34 67 53 8 30 61 9 9 79 69 54 66 75 22 17 12 15 48 100
Y 4 43 35 77 23 47 64 71 55 47 34 47 54 26 29 21 22 16 90
W 49 61 53 8 35 64 87 92 72 58 57 60 71 31 3 27 29 25 24

C S T P A G N D E Q H R K M | L \% F Y W
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TABLE Ill. Amino acid distance matrices for shedtsottom lef) and coils(top right. Entries have been multiplied by a factor 200.

C 43 51 70 36 47 51 66 50 51 46 48 54 55 51 44 42 47 48 66
S 42 10 24 17 17 16 21 20 14 30 15 19 32 38 27 24 30 32 45
T 49 15 28 19 24 16 21 17 16 34 17 17 26 32 24 22 28 31 46
P 68 42 46 37 28 25 22 31 28 48 28 31 52 67 59 49 62 61 71
A 33 20 24 42 6 22 29 16 16 30 17 21 23 27 17 15 24 25 41
G 35 29 37 62 16 18 23 381 28 36 17 31 31 44 17 27 31 32 44
N 51 23 27 46 30 37 14 19 19 30 19 20 34 42 34 31 31 34 54
D 54 24 31 46 32 42 23 22 23 39 283 22 46 56 48 41 46 51 65
E 60 21 19 48 32 47 26 24 14 32 14 11 25 30 25 17 25 24 39
Q 52 20 17 53 28 41 29 30 22 32 14 14 30 33 26 21 26 25 38
H 50 27 26 54 28 33 34 33 30 28 29 36 51 44 41 39 44 40 67
R 46 21 20 44 20 33 32 31 21 23 22 16 31 33 24 21 28 29 47
K 62 29 20 52 30 47 35 34 20 23 35 24 34 34 28 21 29 26 50
M 38 45 44 65 24 33 52 62 50 46 44 38 52 28 22 22 27 30 39
| 32 38 36 62 24 35 56 57 49 41 40 36 43 23 12 15 16 20 34
L 27 37 34 58 19 29 50 55 45 41 37 32 43 20 09 100 12 17 33
\% 31 3% 32 58 19 27 51 57 46 40 36 32 38 22 09 10 14 17 29
F 29 45 44 71 25 33 62 67 59 47 49 42 56 28 14 12 15 18 33
Y 32 35 32 64 24 33 51 54 47 34 33 31 42 29 13 13 15 14 31
W 46 57 58 71 47 60 69 76 62 52 54 57 66 48 39 39 38 33 37
C S T P A G N D E Q H R K M I L \% F Y W

amino acid at the reduced four different conformation state$lowever, a decay is clearly seen when the kibecomes far
are given in Table I. away from the center. For more discussions on correlations,
We first estimate probability distributions of residues forwe refer reader to Reffl1,12. As seen from most curves of
each central residue at a given conformation. At this step, ththe figures, distances at the six sites nearest to the center are
window width is 21. We then calculate distancessignificantly larger than those at window border sites. We
Dix.o({Pk(Y|X,@)},{Q(y|X,@)}) of these distributions to shall use window width of 7 for further comparison of amino
their corresponding noise distributions. The results arecids.
shown in Figs. 1-4, each of which is for one conformation It is natural to expect that similar residues would have
of the central residue. The 20 curves in each figure corresimilar window statistics. Thus, the KL distance between two
spond to 20 central amino acids. Due to the sample sizeesidue profiles provides a measure of their similarity, i.e., a
difference, curves are not directly comparab{Roughly  small KL distance implies a large similarity. We calculate the
speaking, under the null hypothesis of identical distribution KL distance matrice®,,, , for residue pairs at different con-
the x? distance should be scaled with the sample size, so tormations with formula7). The results are given in Tables
small sample size would give a relatively large distance.|Il and lll, where entries have been multiplied by a factor
200. With the distributiong9) defined for clusters, we fur-
TABLE IV. Clustering of amino acid alphabets for he-

lices. The first column indicates the number of amino acid TABLE V. Clustering of amino acid alphabets for

sheets. The first column indicates the number of amino acid

roups.
group groups.
1I9ADEKQRSTNGHCFILVMYWP
1ISADEKQRSTNGHCFILV MYWP 1I9AGFILVYMDEQSTREKHNCWP
17TADEKQRSTNGHCEFILV MYWP 1I8AGFILV YMDEQSTRKHNCUWP
16 ADEKQRST NGHCFILV MYVWP 17AGFILV YMDEQSTRKHNCWP
I5ADEKQR ST NGHCFILV MYWP 16 A GFILVY MDEQSTRKHNCUWP
14 ADEKQR ST NGHCFILV MYWP 15AGFILVY MDEQST RKHNCWP
13 A D E KQRST NGHCFILV MYWP 14 A G FILVY MDEQT RKHNCWP
12 A D E KQRSTN GHCFILV MYWP 13 AGFILVY MDEQST REKHNCWP
11 A D EKQ GHCFILV MYWP 12 A G FILVY M D EQSTR KHNCWP
10 A DEKQRSTN GHCFILV MYWP 11 A G FILVY M D EQSTRK HNCWP
9 A DEKQRSTN G H C FILWVM YWP 10 AG FILVY M D EQSTRK HNCWP
8 ADEKQRSTN G H C FILVM YWP 9 AGFILVY M D EQSTRK HNCWP
7 ADEKQRSTN G H C FILVMY WP 8 AGFILVYM D EQSTRK HNCWP
6 ADEKQRSTNG H C FILVMY WP 7 AGFILVYM D EQSTRKH NCWwP
5 ADEKQRSTNGH ¢ FILVMY WP 6 AGFILVYM D EQSTRKHN CWP
3 ADEKQRSTNCH cFILWNW P 3 AGFILVYMDEQSTRIING °ul
G
QRSTNGHCFILVMYW P 2 AGFILVYMDEQSTRKHNCW P
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TABLE VI. Clustering of amino acid alphabets for TABLE VII. Clustering of amino acid alphabets for
coils. The first column indicates the number of amino acid turns. The first column indicates the number of amino acid
groups. groups.

19 AEKQRSTNGDFLVIYMHPUWC I9ADNEKSTRQLYFVHGIPMWC
1S8AEKQRSTNGDFLV IYMHPUWC ISADNEKST RQLYFVHGIPMWC
17TAEKQRSTNGDFLY IYMHPWC 1I7TADNEK ST RQLYFVHGIPMVWC
16 AEKQRSTN G D FLVI YMHPWC 16 ADNEK ST RQLYFVHGIPMUWC
15 AEK QR STNGD FLVI YMHPWC 15 A DNEKST RQLYFVHGIPMWC
14 AEKQ R ST N G D FLVI YMHPWC 14 A DNEKSTR QLYFVHGIPMWC
13 A EKQR ST N G D FLVI YMHPWC 13 ADNEKSTR QLYFVHGIPMWC
12 A EKQRST N G D FLVI YMHPWC 12 ADNEKSTRQ LYFVHGIPMVWC
11 AEKQRST N G D FLVI YMHPWC 11 ADNEKSTRQL YFVHGIPMWC
10 AEKQRSTN G D FLVI YMHPUWC 10 ADNEKSTRQLY FVHGIPMWC

9 AEKQRSTNG D FLVI YMHPWC 9 ADNEKSTRQLYF VEGIPMWC

8 AEKQRSTNG D FLVIY MHPWC 8 ADNEKSTRQLYFV HGIPMWC

7 AEKQRSTNGD FLVIY MHPWC 7 ADNEKSTRQLYFVH GIPMWC

6 AEKQRSTNGDFLVIY MHPWC 6 ADNEKSTRQLYFVHG IPMWC

5 AEKQRSTNGDFLVIYM HPWC S ADNEKSTRQLYFVHGI PMWC

4 AEKQRSTNGDFLVIYMH PWC 4 ADNEKSTRQLYFVHGIP MWC

3 AEKQRSTNGDFLVIYMHP W 3 ADNEKSTRQLYFVHGIPM W<

2 AEKQRSTNGDFLVIYMHPW c 2 ADNEKSTRQLYFVHGIPMW c

ther perform the simplest bottom-up approach of hierachical N (Y|%) = > Ne(y|x,a), (10)
clustering for residues, by starting from 20 clusters of single a

residues and then joining the two nearest clusters step by
step until a single cluster is obtained. The results of clusterfrom which we calculate the residue pair distances averaged
ing are given in Tables IV-VII. Since the dendritic trees over conformations. The distance matrix obtained is given in
returned from clustering are less informative, for visualiza-Table VIII. We have also calculated distan¢8sto compare
tion we introduce graphs where vertices are the 20 amindifferent conformations. Distances between any two confor-
acids and an edge exists between a pair of amino acids if andations for various residues are listed in Table IX.
only if their distance is below some preset threshold. Graphs
obtained fr_om theT distance matrlces are shown in Figs. 5-8, IV. DISCUSSIONS
where vertices with no connecting edges are neglected.

In sequence pair alignment, we often do not have struc- Figures 1—4 illustrate the dependence of outer sites in a
ture information of both the sequences. With the structuravindow on the center. Although in the KL distance, we sum
information ignored, we have the mixed counts up effects on individual residues from the center, we still can

TABLE VIII. Table 8. Amino acid distances ignoring conformation.

21
25 5
25 9 1

29 12 12 16

21 8 11 11 11

25 7 9 13 12 8

32 9 9 15 10 11 6

40 18 18 21 11 18 14 9

34 12 12 18 8 14 10 9 8

21 13 14 17 18 14 12 15 23 17

31 11 13 16 7 13 11 10 9 5 15

35 15 14 18 12 16 10 9 8 10 22 8

33 19 16 20 10 17 18 18 19 16 24 15 18

25 16 13 16 12 14 16 17 20 18 19 16 15 10

26 16 14 17 9 14 16 17 19 15 20 14 15 8 4

24 10 9 13 8 9 11 12 15 13 17 12 12 10 6 6

22 13 11 16 13 11 14 16 20 18 18 16 15 12 6 6 6
24 9 9 13 13 10 11 14 19 15 14 15 14 13 8 9 7 5

32 20 19 20 21 17 22 25 29 23 24 24 27 18 14 13 13 10 12
c s T P AAGNDEQMH R KM I L V F Y W

SXTLKETZIARAITIOMUZOP»THOO
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TABLE IX. Conformation pair distances for each amino acid. e T8
Entries have been multiplied by a factor 20B: Helix, e Sheetg: R
coil, andt: Turn) g @

he hc ht ec et ct

c 133 185 163 127 197 139 P
S 93 129 124 93 148 73
T 98 120 131 103 175 96 D=10 W<D=<15 15<D=<20
P 172 118 121 89 233 116 FIG. 6. (Color online Connecting graph of amino acids in
A 112 148 127 122 149 73 sheet. Edges exist only between vertices with a scaled distance not
G 79 101 80 91 107 57 greater than 20. Vertices without any connecting edges are not
N 126 145 118 106 152 76 shown.
D 149 137 149 93 174 81
E 159 152 138 109 192 73
Q 130 157 133 93 143 93
H 100 150 110 117 152 98
R 131 146 128 91 144 85
K 137 149 128 93 155 88
M 130 161 147 126 156 135
| 138 180 134 118 130 110
L 143 162 113 127 148 98
\Y 114 151 151 98 147 101
F 120 150 111 107 115 88
Y 95 147 96 111 117 80
W 120 181 201 123 173 111

see the tendency that the center is generally more strongly
correlated with theC-terminal sites tharN-terminal sites.
Furthermore, we may divide the 20 amino acids into two
groups withM, I, L, V, F, Y, andWin one, and the remaining

in the other. These roughly correspond to hydrophobic and
hydrophilic groups. It is seen that for the coil and turn con- FIG. 7. (Color online Connecting graph of amino acids in coil.
formations, a hydrophobic center exhibits a stronger correlaEdges exist c_>n|y be_tween vertices witk_l a scaled distance not greater
tion with outer sites than a hydrophilic center, while for the than 17. Vertices without any connecting edges are not shown.
sheet conformation a hydrophilic center exhibits a stronger
correlation.

It is interesting to make a comparison between the dis-
tance matrices obtained here with the commonly used
Block substitution matriXBLOSUM®62) similarity score ma-
trix. A small distance implies a large similarity score. There
are many evidences showing the consistency between the
distances and the scores. For example, residue WajriL ,

VL, andST have positive BLOSUM scores and at the same
time small distances. The graphs in Figs. 5—8 contain two

D<10 —10<D<15 e 15<D<17

25<D<30 e 30< D35

D<10 —10<D<15 e 15<D<20 — Dx25

FIG. 5. (Color online Connecting graph of amino acids in helix. FIG. 8. (Color online Connecting graph of amino acids in turn.
Edges exist only between vertices with a scaled distance not great&dges exist only between vertices with a scaled distance not greater
than 20. Vertices without any connecting edges are not shown. than 35. Vertices without any connecting edges are not shown.
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connected subgraphs: one consistd,df, V, F, Y, and the There are many residue pairs displaying strong dependence
other consists o5 T. This is another evidence of the con- of distances on conformations. Table IX views the conforma-
sistency. Generally, the averaged distance matrix is closer ton dependence from conformation pair comparison. Indeed,
BLOSUME62 than the conformation specific ones. Howeverihe table indicates that for any conformation pairs, there are
there do exist some remarkable differences. For exampleertain residues, which behave very differently in the two
residue pairs$3T, QA, FV with negative scores have rather conformations. However, generally speaking, coil and turn
small distances in either the conformation helix, or sheet ogre quite similar.
coil, while pairsY H andNH with positive scores have rather |y 3 comparison of physicochemical properties of amino
large distances in the helix conformation. Moreowd has  acids, the abundance of amino acids is not taken into consid-
a large distance in all the four conformations. _eration. This is also the case for the above defined distances.
BLOSUM matrices are derived from conserved aminogther statistical variables including the effect of sample size
acid patterns called blocks. It is expected that for most SCOghay be introduced. One candidate is jifestatistic for iden-
entries, we should see the consistency in at least one confogea| distributions. The analysis using this new statistic is
mation specific distance matrix. For a given residue pair, ifynder study.
residue profiles of an amino acid center are very dissimilar \ve expect that algorithms using multiple conformation
for different conformations, after averaging over conforma-gpecific matrices should work better in sequence alignment.
tions the pair distance would generally become smaller. IRrhe popular Needleman-Wunsch algorithm can be modified

this case, BLOSUM scores and conformation specific distg jnclude putative conformation for each residue. This will
tance need not be consistent since the former contains nNg, giscussed elsewhere.

structure information.

Our results show some strong dependence of residue be- This work was supported in part by the Special Funds for
havior on conformations. For example, the distances of pairdMajor National Basic Research Projects and the National
CD andSl in helix are about two times higher than in sheet. Natural Science Foundation of China.
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