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Distances and classification of amino acids for different protein secondary structures
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Window profiles of amino acids in protein sequences are used to describe the amino acid environment. The
relative entropy or Kullback-Leibler distance derived from these profiles is used as a measure of dissimilarity
for comparison of amino acids and secondary structure conformations. Distance matrices of amino acid pairs
at different conformations are obtained, which display a non-negligible dependence of amino acid similarity on
conformations. Based on the conformation specific distances, a clustering analysis for amino acids is con-
ducted.
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I. INTRODUCTION

The similarity of amino acids is the basis of protein s
quence alignment, protein design, and protein structure
diction. Several scoring schemes have been proposed b
on amino acid similarity. The mutation data matrices of Da
hoff @1# and the substitution matrices of Henikoff@2# are
standard choices of scores for sequence alignment and a
acid similarity evaluation. However, these matrices, focus
on the whole protein database, pay little attention to prot
secondary structures. How the amino acid similarity is infl
enced by different secondary structures is an interes
question. Furthermore, understanding the differences
help us in the protein sequence analysis.

Despite the efforts in uncovering the information encod
in the primary structure, we still cannot read the langua
describing the final three-dimensional fold of an active b
logical macromolecule. Compared with the DNA sequenc
protein sequence is generally much shorter, but the siz
the alphabet is five times larger. A proper coarse graining
the 20 amino acids into fewer clusters for different conf
mations is important for improving the signal-to-noise ra
when extracting information by statistical means.

It is our purpose to propose a simple scheme to st
amino acid similarity from amino acid string statistics. Info
mation about the environment for an amino acid at a cer
conformation state may be provided by the statistics of r
due strings or windows centered at the amino acid. The s
cess of window-based approaches such as GOR@3# for sec-
ondary structure prediction validates the use of su
statistics. We shall derive a measure for the difference
amino acid pairs based on the distance of probability dis
butions, and investigate how the difference is dependen
conformations.

II. AMINO ACID DISTANCES

Our discussion will be strongly based on the distance
tween two probability distributions. A well-defined measu
of the distance is the Kullback-Leibler~KL ! distance or rela-
1063-651X/2003/67~5!/051927~7!/$20.00 67 0519
-
e-
sed
-

ino
g
in
-
g

an

d
e
-
a
of
f

-

y

in
i-
c-

h
f

i-
n

-

tive entropy @4–6#, which, for two distributions$pi% and
$qi%, is given by

d~$pi%,$qi%!5(
i

pi ln~pi /qi !. ~1!

It corresponds to a likelihood ratio, and, ifpi is expanded
aroundqi , its leading term is thex2 distance:

dx~$pi%,$qi%!5(
i

~pi2qi !
2/pi . ~2!

It is often used in the following symmetrized form for the K
distance:

TABLE I. Sample sizes of each amino acid residue in differe
protein secondary structures.

h e c t

C 690 732 822 224
S 2841 1764 3538 1179
T 2350 2288 3112 762
P 1173 624 3648 1302
A 5950 2019 2651 1122
G 1795 1633 4328 3090
N 1904 922 2692 1388
D 2841 1029 3621 1424
E 4773 1514 2325 1172
Q 2757 1008 1532 653
H 1132 794 1148 426
R 3108 1469 1948 771
K 3861 1579 2645 1187
M 1390 693 679 223
I 3169 3333 1719 368
L 6262 3307 2952 850
V 3233 4461 2330 487
F 2225 1948 1545 444
Y 1806 1773 1303 459
W 827 632 536 173
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FIG. 1. ~Color online! KL distances~doubled!
of outer sites from their corresponding nois
background. Each curve is for an amino acid
the center labeled as 0, whose conformation
turn. For clarity, the curves forM, I, L, V, F, Y,
and W have been shifted up by multiplying a
extra factor 100.
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D~$pi%,$qi%!5 1
2 @d~$pi%,$qi%!1d~$qi%,$pi%!#. ~3!

The distributions to be considered here come from w
dow statistics. For a given amino acid residueai5x at the
conformation statea in a sequencea1a2•••ai•••, we take
the stringa2n1 ia2n1 i 11•••ai•••ai 1n of width (2n11) as
a window. Denote byNk(yux,a) the count of residuey at the
k th site from the center of such windows. As in GOR, on
the conformation of the central residue is concerned. A qu
tity derived fromNk(yux,a) is

N~x,a!5(
y

Nk~yux,a!, ~4!

which, as the total count of residuex at the conformationa,
is independent ofk. The conditional probability distribution
Pk(yux,a) is estimated as

FIG. 2. ~Color online! KL distances~doubled! of outer sites
from their corresponding noise background. Each curve is for
amino acid at the center labeled as 0, whose conformation is
For clarity, the curves forM, I, L, V, F, Y, andW have been shifted
up by multiplying an extra factor 100.
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Pk~yux,a!5
Nk~yux,a!

N~x,a!
. ~5!

The weight matrixM2032n with its entries beingPk(yux,a)
is the so-called residue profile ofx at a. Such profiles are
used in window-based approaches, e.g., GOR and artifi
neural network algorithm@7#.

We expect that, on an average, the correlation between
central residue and an outer site decays when these bec
far apart in the sequence. To examine the correlation,
consider a large window width of 21, i.e.,n510, and take
the ‘‘noise’’ background to be the following average:

Q~yux,a!5 1
6 F (

k5210

28

Pk~yux,a!1 (
k58

10

Pk~yux,a!G . ~6!

n
il.

FIG. 3. ~Color online! KL distances~doubled! of outer sites
from their corresponding noise background. Each curve is for
amino acid at the center labeled as 0, whose conformation is s
For clarity, the curves forM, I, L, V, F, Y, andW have been shifted
up by multiplying an extra factor 100.
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The KL distanceDk;x,a„$Pk(yux,a)%,$Q(yux,a)%… provides
a measure of the correlation between the central site and
k. As we shall see, for our purpose of amino acid comp
son, a narrow window of a strong correlation with width of
is used to describe amino acid enviroment.

Using distributionPk(yux,a) from window statistics to
characterize amino acid residues, we define the distanc
residue pairx andy at the same conformationa as the fol-
lowing sum of KL distances:

Dxy;a5 (
k561,62,63

D~$Pk~zux,a!%,$Pk~zuy,a!%!. ~7!

Similarly, to explore the difference of the same residuex at
different conformationsa andb, we may define the distanc

Dab;x5 (
k561,62,63

D~$Pk~zux,a!%,$Pk~zux,b!%!. ~8!

By means of the residue pair distances, we can furt
study the classification of amino acids. With the KL distan
we may define the cluster distance in a way consistent w
that for residue pairs. For example, we characterize the c
ter consisting of residuesx and y by the ‘‘coarse-grained’’
probability

Pk~zux& y,a!5
Nk~zux,a!1Nk~zuy,a!

N~x,a!1N~y,a!
. ~9!

Then we may define the distance between this cluster
some other residues or clusters. With cluster distance
fined, the cluster analysis can be used to reduce amino
alphabets.
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III. RESULTS

Our analysis is performed on a dataset taken from
database PDB_SELECT@8,9# of nonredundant protein se
quences with known structures. The sequences share a
acid identity less than 25%. We keep only the nonmembr
sequences with their lengths between 80 and 420. The
ondary structure assignment is taken from the Databas
Secondary Structure in Proteins~DSSP! @10#. As in GOR, we
use the following reduction of the eight DSSP states to f
states of helix (h), sheet (e), coil (c), and turn (t):
H,G,I→h, E→e, X,S,B→c, andT→t. The counts of each

FIG. 4. ~Color online! KL distances~doubled! of outer sites
from their corresponding noise background. Each curve is for
amino acid at the center labeled as 0, whose conformation is h
For clarity, the curves forM, I, L, V, F, Y, andW have been shifted
up by multiplying an extra factor 100.
.
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TABLE II. Amino acid distance matrices for helices~bottom left! and turns~top right!. Entries have been multiplied by a factor 200

C 106 116 135 118 145 134 132 121 129 111 118 124 154 134 121 119 104 123
S 64 23 52 29 59 35 33 36 37 54 26 36 78 61 38 49 45 40 1
T 63 13 61 33 74 40 35 39 46 62 33 37 92 63 40 46 45 38 9
P 81 48 49 44 99 71 69 54 62 82 47 55 106 89 71 71 62 66 1
A 45 21 17 63 64 38 39 32 36 58 29 33 63 64 34 46 48 43 9
G 57 15 20 52 25 32 39 54 55 57 47 52 81 79 61 88 75 70 1
N 82 14 22 67 33 26 18 30 31 44 29 31 72 68 38 63 53 36 9
D 101 17 26 56 39 32 16 25 34 44 30 29 77 58 36 54 49 37 9
E 82 20 25 56 27 36 22 14 33 53 37 23 73 65 46 51 59 43 1
Q 70 16 21 60 19 28 17 21 14 51 32 38 79 66 51 62 62 49 1
H 55 23 24 55 26 26 33 35 34 28 51 58 90 79 54 81 70 55 1
R 69 21 22 59 21 30 22 28 24 13 28 30 71 69 38 54 49 48 1
K 80 21 25 67 28 38 22 27 23 19 38 13 81 63 38 49 51 47 1
M 48 57 45 85 23 56 75 82 64 51 50 50 60 93 62 85 93 78 1
I 43 81 65 104 35 78 104 116 88 76 66 73 79 22 47 55 55 54 1
L 35 65 52 90 26 62 83 99 73 59 53 56 67 15 10 49 36 31 8
V 37 59 44 81 22 55 77 90 67 53 52 51 60 16 12 09 46 58 9
F 34 67 53 87 30 61 90 99 79 69 54 66 75 22 17 12 15 48 1
Y 44 43 35 77 23 47 64 71 55 47 34 47 54 26 29 21 22 16 9
W 49 61 53 82 35 64 87 92 72 58 57 60 71 31 35 27 29 25 24

C S T P A G N D E Q H R K M I L V F Y W
7-3
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TABLE III. Amino acid distance matrices for sheets~bottom left! and coils~top right!. Entries have been multiplied by a factor 200

C 43 51 70 36 47 51 66 50 51 46 48 54 55 51 44 42 47 48 6
S 42 10 24 17 17 16 21 20 14 30 15 19 32 38 27 24 30 32 4
T 49 15 28 19 24 16 21 17 16 34 17 17 26 32 24 22 28 31 4
P 68 42 46 37 28 25 22 31 28 48 28 31 52 67 59 49 62 61 7
A 33 20 24 42 16 22 29 16 16 30 17 21 23 27 17 15 24 25 4
G 35 29 37 62 16 18 23 31 28 36 17 31 31 44 17 27 31 32 4
N 51 23 27 46 30 37 14 19 19 30 19 20 34 42 34 31 31 34 5
D 54 24 31 46 32 42 23 22 23 39 23 22 46 56 48 41 46 51 6
E 60 21 19 48 32 47 26 24 14 32 14 11 25 30 25 17 25 24 3
Q 52 20 17 53 28 41 29 30 22 32 14 14 30 33 26 21 26 25 3
H 50 27 26 54 28 33 34 33 30 28 29 36 51 44 41 39 44 40 6
R 46 21 20 44 20 33 32 31 21 23 22 16 31 33 24 21 28 29 4
K 62 29 20 52 30 47 35 34 20 23 35 24 34 34 28 21 29 26 5
M 38 45 44 65 24 33 52 62 50 46 44 38 52 28 22 22 27 30 3
I 32 38 36 62 24 35 56 57 49 41 40 36 43 23 12 15 16 20 3
L 27 37 34 58 19 29 50 55 45 41 37 32 43 20 09 10 12 17 3
V 31 35 32 58 19 27 51 57 46 40 36 32 38 22 09 10 14 17 2
F 29 45 44 71 25 33 62 67 59 47 49 42 56 28 14 12 15 18 3
Y 32 35 32 64 24 33 51 54 47 34 33 31 42 29 13 13 15 14 3
W 46 57 58 71 47 60 69 76 62 52 54 57 66 48 39 39 38 33 37

C S T P A G N D E Q H R K M I L V F Y W
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amino acid at the reduced four different conformation sta
are given in Table I.

We first estimate probability distributions of residues f
each central residue at a given conformation. At this step,
window width is 21. We then calculate distanc
Dk;x,a($Pk(yux,a)%,$Q(yux,a)%) of these distributions to
their corresponding noise distributions. The results
shown in Figs. 1–4, each of which is for one conformati
of the central residue. The 20 curves in each figure co
spond to 20 central amino acids. Due to the sample
difference, curves are not directly comparable.~Roughly
speaking, under the null hypothesis of identical distributi
the x2 distance should be scaled with the sample size, s
small sample size would give a relatively large distanc!

TABLE IV. Clustering of amino acid alphabets for he-
lices. The first column indicates the number of amino acid
groups.
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However, a decay is clearly seen when the sitek becomes far
away from the center. For more discussions on correlatio
we refer reader to Refs.@11,12#. As seen from most curves o
the figures, distances at the six sites nearest to the cente
significantly larger than those at window border sites. W
shall use window width of 7 for further comparison of amin
acids.

It is natural to expect that similar residues would ha
similar window statistics. Thus, the KL distance between t
residue profiles provides a measure of their similarity, i.e
small KL distance implies a large similarity. We calculate t
KL distance matricesDxy;a for residue pairs at different con
formations with formula~7!. The results are given in Table
II and III, where entries have been multiplied by a fact
200. With the distributions~9! defined for clusters, we fur-

TABLE V. Clustering of amino acid alphabets for
sheets. The first column indicates the number of amino acid
groups.
7-4
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ther perform the simplest bottom-up approach of hierach
clustering for residues, by starting from 20 clusters of sin
residues and then joining the two nearest clusters step
step until a single cluster is obtained. The results of clus
ing are given in Tables IV–VII. Since the dendritic tre
returned from clustering are less informative, for visualiz
tion we introduce graphs where vertices are the 20 am
acids and an edge exists between a pair of amino acids if
only if their distance is below some preset threshold. Gra
obtained from the distance matrices are shown in Figs. 5
where vertices with no connecting edges are neglected.

In sequence pair alignment, we often do not have str
ture information of both the sequences. With the struct
information ignored, we have the mixed counts

TABLE VI. Clustering of amino acid alphabets for
coils. The first column indicates the number of amino acid
groups.
05192
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Nk~yux,a!, ~10!

from which we calculate the residue pair distances avera
over conformations. The distance matrix obtained is given
Table VIII. We have also calculated distances~8! to compare
different conformations. Distances between any two con
mations for various residues are listed in Table IX.

IV. DISCUSSIONS

Figures 1–4 illustrate the dependence of outer sites
window on the center. Although in the KL distance, we su
up effects on individual residues from the center, we still c

TABLE VII. Clustering of amino acid alphabets for
turns. The first column indicates the number of amino acid
groups.
TABLE VIII. Table 8. Amino acid distances ignoring conformation.

C
S 21
T 25 5
P 25 9 11
A 29 12 12 16
G 21 8 11 11 11
N 25 7 9 13 12 8
D 32 9 9 15 10 11 6
E 40 18 18 21 11 18 14 9
Q 34 12 12 18 8 14 10 9 8
H 21 13 14 17 18 14 12 15 23 17
R 31 11 13 16 7 13 11 10 9 5 15
K 35 15 14 18 12 16 10 9 8 10 22 8
M 33 19 16 20 10 17 18 18 19 16 24 15 18
I 25 16 13 16 12 14 16 17 20 18 19 16 15 10
L 26 16 14 17 9 14 16 17 19 15 20 14 15 8 4
V 24 10 9 13 8 9 11 12 15 13 17 12 12 10 6 6
F 22 13 11 16 13 11 14 16 20 18 18 16 15 12 6 6 6
Y 24 9 9 13 13 10 11 14 19 15 14 15 14 13 8 9 7 5
W 32 20 19 20 21 17 22 25 29 23 24 24 27 18 14 13 13 10 12

C S T P A G N D E Q H R K M I L V F Y W
7-5
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see the tendency that the center is generally more stro
correlated with theC-terminal sites thanN-terminal sites.
Furthermore, we may divide the 20 amino acids into t
groups withM, I, L, V, F, Y, andW in one, and the remaining
in the other. These roughly correspond to hydrophobic
hydrophilic groups. It is seen that for the coil and turn co
formations, a hydrophobic center exhibits a stronger corr
tion with outer sites than a hydrophilic center, while for t
sheet conformation a hydrophilic center exhibits a stron
correlation.

It is interesting to make a comparison between the d
tance matrices obtained here with the commonly u
Block substitution matrix~BLOSUM62! similarity score ma-
trix. A small distance implies a large similarity score. The
are many evidences showing the consistency between
distances and the scores. For example, residue pairsVI, IL ,
VL, andST have positive BLOSUM scores and at the sa
time small distances. The graphs in Figs. 5–8 contain

TABLE IX. Conformation pair distances for each amino ac
Entries have been multiplied by a factor 200. (h: Helix, e: Sheet,c:
coil, andt: Turn.!

he hc ht ec et ct

C 133 185 163 127 197 139
S 93 129 124 93 148 73
T 98 120 131 103 175 96
P 172 118 121 89 233 116
A 112 148 127 122 149 73
G 79 101 80 91 107 57
N 126 145 118 106 152 76
D 149 137 149 93 174 81
E 159 152 138 109 192 73
Q 130 157 133 93 143 93
H 100 150 110 117 152 98
R 131 146 128 91 144 85
K 137 149 128 93 155 88
M 130 161 147 126 156 135
I 138 180 134 118 130 110
L 143 162 113 127 148 98
V 114 151 151 98 147 101
F 120 150 111 107 115 88
Y 95 147 96 111 117 80
W 120 181 201 123 173 111

FIG. 5. ~Color online! Connecting graph of amino acids in helix
Edges exist only between vertices with a scaled distance not gr
than 20. Vertices without any connecting edges are not shown.
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FIG. 6. ~Color online! Connecting graph of amino acids i
sheet. Edges exist only between vertices with a scaled distanc
greater than 20. Vertices without any connecting edges are
shown.

FIG. 7. ~Color online! Connecting graph of amino acids in coi
Edges exist only between vertices with a scaled distance not gre
than 17. Vertices without any connecting edges are not shown.

FIG. 8. ~Color online! Connecting graph of amino acids in turn
Edges exist only between vertices with a scaled distance not gre
than 35. Vertices without any connecting edges are not shown.
7-6
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connected subgraphs: one consists ofI, L, V, F, Y, and the
other consists ofS, T. This is another evidence of the con
sistency. Generally, the averaged distance matrix is close
BLOSUM62 than the conformation specific ones. Howev
there do exist some remarkable differences. For exam
residue pairsGT, QA, FV with negative scores have rath
small distances in either the conformation helix, or shee
coil, while pairsYH andNH with positive scores have rathe
large distances in the helix conformation. Moreover,YH has
a large distance in all the four conformations.

BLOSUM matrices are derived from conserved ami
acid patterns called blocks. It is expected that for most sc
entries, we should see the consistency in at least one co
mation specific distance matrix. For a given residue pair
residue profiles of an amino acid center are very dissim
for different conformations, after averaging over conform
tions the pair distance would generally become smaller
this case, BLOSUM scores and conformation specific d
tance need not be consistent since the former contain
structure information.

Our results show some strong dependence of residue
havior on conformations. For example, the distances of p
CD andSI in helix are about two times higher than in she
d
,

A.

y
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There are many residue pairs displaying strong depende
of distances on conformations. Table IX views the conform
tion dependence from conformation pair comparison. Inde
the table indicates that for any conformation pairs, there
certain residues, which behave very differently in the tw
conformations. However, generally speaking, coil and tu
are quite similar.

In a comparison of physicochemical properties of am
acids, the abundance of amino acids is not taken into con
eration. This is also the case for the above defined distan
Other statistical variables including the effect of sample s
may be introduced. One candidate is thex2 statistic for iden-
tical distributions. The analysis using this new statistic
under study.

We expect that algorithms using multiple conformati
specific matrices should work better in sequence alignm
The popular Needleman-Wunsch algorithm can be modi
to include putative conformation for each residue. This w
be discussed elsewhere.
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